Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance.

Identifieur interne : 002B68 ( Main/Exploration ); précédent : 002B67; suivant : 002B69

Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance.

Auteurs : Liuqiang Wang [République populaire de Chine] ; Chenxi Xu ; Chao Wang ; Yucheng Wang

Source :

RBID : pubmed:22834699

Descripteurs français

English descriptors

Abstract

BACKGROUND

The eukaryotic translation initiation factor 5A (eIF5A) promotes formation of the first peptide bond at the onset of protein synthesis. However, the function of eIF5A in plants is not well understood.

RESULTS

In this study, we characterized the function of eIF5A (TaeIF5A1) from Tamarix androssowii. The promoter of TaeIF5A1 with 1,486 bp in length was isolated, and the cis-elements in the promoter were identified. A WRKY (TaWRKY) and RAV (TaRAV) protein can specifically bind to a W-box motif in the promoter of TaeIF5A1 and activate the expression of TaeIF5A1. Furthermore, TaeIF5A1, TaWRKY and TaRAV share very similar expression pattern and are all stress-responsive gene that functions in the abscisic acid (ABA) signaling pathway, indicating that they are components of a single regulatory pathway. Transgenic yeast and poplar expressing TaeIF5A1 showed elevated protein levels combined with improved abiotic stresses tolerance. Furthermore, TaeIF5A1-transformed plants exhibited enhanced superoxide dismutase (SOD) and peroxidase (POD) activities, lower electrolyte leakage and higher chlorophyll content under salt stress.

CONCLUSIONS

These results suggested that TaeIF5A1 is involved in abiotic stress tolerance, and is likely regulated by transcription factors TaWRKY and TaRAV both of which can bind to the W-box motif. In addition, TaeIF5A1 may mediate stress tolerance by increasing protein synthesis, enhancing ROS scavenging by improving SOD and POD activities, and preventing chlorophyll loss and membrane damage. Therefore, eIF5A may play an important role in plant adaptation to changing environmental conditions.


DOI: 10.1186/1471-2229-12-118
PubMed: 22834699
PubMed Central: PMC3479025


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance.</title>
<author>
<name sortKey="Wang, Liuqiang" sort="Wang, Liuqiang" uniqKey="Wang L" first="Liuqiang" last="Wang">Liuqiang Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Chenxi" sort="Xu, Chenxi" uniqKey="Xu C" first="Chenxi" last="Xu">Chenxi Xu</name>
</author>
<author>
<name sortKey="Wang, Chao" sort="Wang, Chao" uniqKey="Wang C" first="Chao" last="Wang">Chao Wang</name>
</author>
<author>
<name sortKey="Wang, Yucheng" sort="Wang, Yucheng" uniqKey="Wang Y" first="Yucheng" last="Wang">Yucheng Wang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22834699</idno>
<idno type="pmid">22834699</idno>
<idno type="doi">10.1186/1471-2229-12-118</idno>
<idno type="pmc">PMC3479025</idno>
<idno type="wicri:Area/Main/Corpus">002952</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002952</idno>
<idno type="wicri:Area/Main/Curation">002952</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002952</idno>
<idno type="wicri:Area/Main/Exploration">002952</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance.</title>
<author>
<name sortKey="Wang, Liuqiang" sort="Wang, Liuqiang" uniqKey="Wang L" first="Liuqiang" last="Wang">Liuqiang Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Chenxi" sort="Xu, Chenxi" uniqKey="Xu C" first="Chenxi" last="Xu">Chenxi Xu</name>
</author>
<author>
<name sortKey="Wang, Chao" sort="Wang, Chao" uniqKey="Wang C" first="Chao" last="Wang">Chao Wang</name>
</author>
<author>
<name sortKey="Wang, Yucheng" sort="Wang, Yucheng" uniqKey="Wang Y" first="Yucheng" last="Wang">Yucheng Wang</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (metabolism)</term>
<term>Abscisic Acid (pharmacology)</term>
<term>Adaptation, Physiological (MeSH)</term>
<term>Cell Membrane (genetics)</term>
<term>Cell Membrane (metabolism)</term>
<term>Chlorophyll (genetics)</term>
<term>Chlorophyll (metabolism)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genetic Vectors (MeSH)</term>
<term>Peptide Initiation Factors (genetics)</term>
<term>Peptide Initiation Factors (metabolism)</term>
<term>Peroxidase (genetics)</term>
<term>Peroxidase (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Plants, Genetically Modified (physiology)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>RNA-Binding Proteins (genetics)</term>
<term>RNA-Binding Proteins (metabolism)</term>
<term>Regulatory Sequences, Nucleic Acid (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Salt-Tolerant Plants (genetics)</term>
<term>Salt-Tolerant Plants (metabolism)</term>
<term>Salt-Tolerant Plants (physiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sodium Chloride (pharmacology)</term>
<term>Solubility (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Superoxide Dismutase (genetics)</term>
<term>Superoxide Dismutase (metabolism)</term>
<term>Tamaricaceae (genetics)</term>
<term>Tamaricaceae (metabolism)</term>
<term>Tamaricaceae (physiology)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transformation, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide abscissique (métabolisme)</term>
<term>Acide abscissique (pharmacologie)</term>
<term>Adaptation physiologique (MeSH)</term>
<term>Chlorophylle (génétique)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Chlorure de sodium (pharmacologie)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Facteurs initiation chaîne peptidique (génétique)</term>
<term>Facteurs initiation chaîne peptidique (métabolisme)</term>
<term>Membrane cellulaire (génétique)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Myeloperoxidase (génétique)</term>
<term>Myeloperoxidase (métabolisme)</term>
<term>Plantes tolérantes au sel (génétique)</term>
<term>Plantes tolérantes au sel (métabolisme)</term>
<term>Plantes tolérantes au sel (physiologie)</term>
<term>Protéines de liaison à l'ARN (génétique)</term>
<term>Protéines de liaison à l'ARN (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Solubilité (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Superoxide dismutase (génétique)</term>
<term>Superoxide dismutase (métabolisme)</term>
<term>Séquences d'acides nucléiques régulatrices (MeSH)</term>
<term>Tamaricaceae (génétique)</term>
<term>Tamaricaceae (métabolisme)</term>
<term>Tamaricaceae (physiologie)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Vecteurs génétiques (MeSH)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
<term>Végétaux génétiquement modifiés (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chlorophyll</term>
<term>Peptide Initiation Factors</term>
<term>Peroxidase</term>
<term>Plant Proteins</term>
<term>RNA-Binding Proteins</term>
<term>Superoxide Dismutase</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Abscisic Acid</term>
<term>Chlorophyll</term>
<term>Peptide Initiation Factors</term>
<term>Peroxidase</term>
<term>Plant Proteins</term>
<term>RNA-Binding Proteins</term>
<term>Superoxide Dismutase</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Abscisic Acid</term>
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Membrane</term>
<term>Plants, Genetically Modified</term>
<term>Saccharomyces cerevisiae</term>
<term>Salt-Tolerant Plants</term>
<term>Tamaricaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chlorophylle</term>
<term>Facteurs de transcription</term>
<term>Facteurs initiation chaîne peptidique</term>
<term>Membrane cellulaire</term>
<term>Myeloperoxidase</term>
<term>Plantes tolérantes au sel</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines végétales</term>
<term>Saccharomyces cerevisiae</term>
<term>Superoxide dismutase</term>
<term>Tamaricaceae</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Plants, Genetically Modified</term>
<term>Saccharomyces cerevisiae</term>
<term>Salt-Tolerant Plants</term>
<term>Tamaricaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide abscissique</term>
<term>Chlorophylle</term>
<term>Facteurs de transcription</term>
<term>Facteurs initiation chaîne peptidique</term>
<term>Membrane cellulaire</term>
<term>Myeloperoxidase</term>
<term>Plantes tolérantes au sel</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines végétales</term>
<term>Saccharomyces cerevisiae</term>
<term>Superoxide dismutase</term>
<term>Tamaricaceae</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide abscissique</term>
<term>Chlorure de sodium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Plantes tolérantes au sel</term>
<term>Tamaricaceae</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Salt-Tolerant Plants</term>
<term>Tamaricaceae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Cloning, Molecular</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genetic Vectors</term>
<term>Promoter Regions, Genetic</term>
<term>Regulatory Sequences, Nucleic Acid</term>
<term>Signal Transduction</term>
<term>Solubility</term>
<term>Stress, Physiological</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Clonage moléculaire</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Solubilité</term>
<term>Stress physiologique</term>
<term>Séquences d'acides nucléiques régulatrices</term>
<term>Transduction du signal</term>
<term>Transformation génétique</term>
<term>Vecteurs génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The eukaryotic translation initiation factor 5A (eIF5A) promotes formation of the first peptide bond at the onset of protein synthesis. However, the function of eIF5A in plants is not well understood.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In this study, we characterized the function of eIF5A (TaeIF5A1) from Tamarix androssowii. The promoter of TaeIF5A1 with 1,486 bp in length was isolated, and the cis-elements in the promoter were identified. A WRKY (TaWRKY) and RAV (TaRAV) protein can specifically bind to a W-box motif in the promoter of TaeIF5A1 and activate the expression of TaeIF5A1. Furthermore, TaeIF5A1, TaWRKY and TaRAV share very similar expression pattern and are all stress-responsive gene that functions in the abscisic acid (ABA) signaling pathway, indicating that they are components of a single regulatory pathway. Transgenic yeast and poplar expressing TaeIF5A1 showed elevated protein levels combined with improved abiotic stresses tolerance. Furthermore, TaeIF5A1-transformed plants exhibited enhanced superoxide dismutase (SOD) and peroxidase (POD) activities, lower electrolyte leakage and higher chlorophyll content under salt stress.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>These results suggested that TaeIF5A1 is involved in abiotic stress tolerance, and is likely regulated by transcription factors TaWRKY and TaRAV both of which can bind to the W-box motif. In addition, TaeIF5A1 may mediate stress tolerance by increasing protein synthesis, enhancing ROS scavenging by improving SOD and POD activities, and preventing chlorophyll loss and membrane damage. Therefore, eIF5A may play an important role in plant adaptation to changing environmental conditions.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22834699</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>02</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2012</Year>
<Month>Jul</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance.</ArticleTitle>
<Pagination>
<MedlinePgn>118</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-12-118</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The eukaryotic translation initiation factor 5A (eIF5A) promotes formation of the first peptide bond at the onset of protein synthesis. However, the function of eIF5A in plants is not well understood.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In this study, we characterized the function of eIF5A (TaeIF5A1) from Tamarix androssowii. The promoter of TaeIF5A1 with 1,486 bp in length was isolated, and the cis-elements in the promoter were identified. A WRKY (TaWRKY) and RAV (TaRAV) protein can specifically bind to a W-box motif in the promoter of TaeIF5A1 and activate the expression of TaeIF5A1. Furthermore, TaeIF5A1, TaWRKY and TaRAV share very similar expression pattern and are all stress-responsive gene that functions in the abscisic acid (ABA) signaling pathway, indicating that they are components of a single regulatory pathway. Transgenic yeast and poplar expressing TaeIF5A1 showed elevated protein levels combined with improved abiotic stresses tolerance. Furthermore, TaeIF5A1-transformed plants exhibited enhanced superoxide dismutase (SOD) and peroxidase (POD) activities, lower electrolyte leakage and higher chlorophyll content under salt stress.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">These results suggested that TaeIF5A1 is involved in abiotic stress tolerance, and is likely regulated by transcription factors TaWRKY and TaRAV both of which can bind to the W-box motif. In addition, TaeIF5A1 may mediate stress tolerance by increasing protein synthesis, enhancing ROS scavenging by improving SOD and POD activities, and preventing chlorophyll loss and membrane damage. Therefore, eIF5A may play an important role in plant adaptation to changing environmental conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Liuqiang</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Chenxi</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Chao</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yucheng</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010448">Peptide Initiation Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C026279">eukaryotic translation initiation factor 5A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.7</RegistryNumber>
<NameOfSubstance UI="D009195">Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="Y">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010448" MajorTopicYN="N">Peptide Initiation Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009195" MajorTopicYN="N">Peroxidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012045" MajorTopicYN="N">Regulatory Sequences, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055051" MajorTopicYN="N">Salt-Tolerant Plants</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032363" MajorTopicYN="N">Tamaricaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22834699</ArticleId>
<ArticleId IdType="pii">1471-2229-12-118</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-12-118</ArticleId>
<ArticleId IdType="pmc">PMC3479025</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEBS J. 2008 Apr;275(8):1874-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18341589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 May;121(1):50-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15086817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Mar 20;380(4):785-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19338753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Sep 1;18(17):4689-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10469648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2009 Nov 15;77(3):736-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19676114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jan;137(1):176-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2006 Mar;273(6):1102-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16519677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2000 Jun 30;16(9):857-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10861908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Sep;148(1):479-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18633122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Jan;75(1-2):167-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21107886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 May 7;459(7243):118-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19424157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Aug;52(6):1223-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14682621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Nov;64(3):536-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Feb;160(2):393-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11861547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 19;279(47):49251-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15371445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6415-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21451136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Dec 20;6(13):3901-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3327686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 May;34(3):257-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12713533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Jul;12(7):294-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17588801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1682-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20492553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 May;156(1):213-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21398258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2010 Feb;38(2):491-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19997760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Sep;61(14):3947-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20826506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 15;27(2):470-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jul;144(3):1531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Apr;26(2):217-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11389762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Dec 14;342(6251):837-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2689886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Sep 1;347(3):634-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16842744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 Mar;275(3):264-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16408210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(4):939-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18304977</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Wang, Chao" sort="Wang, Chao" uniqKey="Wang C" first="Chao" last="Wang">Chao Wang</name>
<name sortKey="Wang, Yucheng" sort="Wang, Yucheng" uniqKey="Wang Y" first="Yucheng" last="Wang">Yucheng Wang</name>
<name sortKey="Xu, Chenxi" sort="Xu, Chenxi" uniqKey="Xu C" first="Chenxi" last="Xu">Chenxi Xu</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Liuqiang" sort="Wang, Liuqiang" uniqKey="Wang L" first="Liuqiang" last="Wang">Liuqiang Wang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22834699
   |texte=   Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22834699" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020